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Abstract 

The power compensated differential scanning calorimetry (DSC) can be considered as 
a linear system to a first approximation. Thus the theory of linear response is applicable to 
describe the apparatus. An outline of this mathematical tool is given. It is shown how the 
apparatus and the sample and their thermal connection influence the output signal, and 
how to obtain the true heat flow from the measured curve with the aid of the Green’s 
function of the apparatus and of the sample. 

INTRODUCTION 

Because the transport of heat needs time and the locations of the sample 
and of the probe are not identical, we always get a measured heat flow-time 
curve which essentially deviates from the true heat production or 
consumption rate of the sample. This holds especially in the case of 
dynamic calorimeters such as the differential scanning calorimeter (DSC) 
with a rather fast rate of temperature change. If the apparatus in question 
has a linear behaviour, it is in principle possible to calculate the true heat 
flow rate from the measured one. This procedure is often called 
“desmearing” in the literature. The tools for desmearing originate from the 
theory of linear response (TLR). For heat flux DSC the transport of heat 
to the sample is predominantly by heat conduction, which is indeed a linear 
process. Consequently desmearing of heat-flux DSC curves should be 
possible and has often been suggested in the literature; see, for example, 
refs. 1, 2. 

Nevertheless a complete theory is not yet at hand. In the case of power 
compensated DSC the situation is complicated by the compensation 
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control circuitry. It cannot be taken for granted that this active heat 
transport system follows linear response. 

The aim of this series of papers is to explain the behaviour of power 
compensated DSC from a transmission theoretical point of view. In this 
paper we want to present the fundamental problems and the method in 
question. In further papers we intend to deal with the following: 
description of a power compensated DSC with the aid of TLR, including 
the influence of the control circuits and discussion of the Green’s functions 
in question; discussion of the influence of material properties and their 
change during measurement on linearity of the power compensated DSC; 
experimental results on the influence of small changes of material 
properties on the measured curve; experimental verification of the theory 
of power compensated DSC in the case of glass transition measurements of 
polystyrene. 

THE SMEARING PROCESS 

In any dynamically working (i.e. temperature changing) apparatus there 
is non-homogeneous temperature distribution. Existing gradients cause 
heat flows. However enforced heat flows (e.g. by transitions within the 
sample) cause temperature gradients and thus change the temperature 
field. This is true for the measuring assembly and also for the sample. 
Depending on the temperature gradient in question, the transport of heat 
needs time while the temperature program of the dynamic calorimeter 
proceeds. As the temperature of the probe is enforced by the compensating 
controller to be nearly the set value of the temperature programme, the 
measured heat flow rate is that from the heaters, necessary to scan the 
probe temperature as desired. Obviously this is not the desired heat flow 
rate to the sample, measured as a function of sample temperature. The 
falsification (smearing) of the latter thus depends both on the properties of 
the heat transport path of the apparatus and on the sample properties. 

The desmearing procedure thus has to be done in such a way that both 
influences will be removed. The influence of the sample on the measured 
curve is caused by the lag of the sample temperature related to the 
programme temperature and of course by the temperature profile within 
the sample. Both depend on sample properties (mass, thermal conductivity, 
surface coefficient of heat transfer, etc.) and on heating rate. 

Furthermore we have to distinguish between desmearing in the following 
cases: 

(i) steady state heating of a substance (with thermal effects), at which the 
lag and the profile of sample temperature do not change during the run; 

(ii) heating of a sample with weak changes of capacity during the run 
yielding a weak change of the temperature profile and the lag (e.g. glass 
transition evaluation); 
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(iii) heating of a sample with first order transition during the run, which 
heavily influences the temperature-profile inside the sample. The tempera- 
ture stops (at transitional temperature) in that layer where the transition 
takes place and the layer of transition slowly travels through the sample. 
With it the temperature profile and the smearing change continuously. 

All these cases need different desmearing procedures, which can either 
be done one after the other or (in special cases) in one step at the same 
time. 

POWER COMPENSATED DSC AS A LINEAR APPARATUS 

In heat flux DSC transport of heat occurs mostly by conduction. This 
process can be described quantitatively by the heat conduction equation, 
which is a linear differential equation. 

d2T PCP *J_T 
ar2- h at 

and 

de=@=-A A dT . . 
dt ar 

with 

a2T a2T I a2T I a2T -=- 
ar2 a2 ay2 a.? 

If it is supposed that the heat conductivity A, density p and specific heat 
capacity cP are nearly independent of temperature, transport of heat by 
conduction is a linear process and can be evaluated with the aid of TLR. 
However, heat transport by convection and radiation are non-linear 
processes. If these participate in calorimetric heat exchange, the linear 
behaviour is correspondingly disturbed. The DSC has to be designed so as 
to transport the heat to the sample by pure heat conduction rather than by 
other (consequently non-linear) processes. For heat flux DSC this demand 
is usually fulfilled in a first approximation, and thus this apparatus can be 
considered as a linear one. 

In the case of power compensated DSC, sample and reference heaters 
are separated from each other and controlled by feedback amplifiers, 
usually with the aid of a proportional controller. Control and feedback 
systems used are linear equipment (TLR has been developed to describe 
such systems). The heat produced by the heater is than transported to the 
sample mainly by heat conduction. The sample or reference of the power 
compensated DSC is thus a interconnection of linear links. As every 
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connection of linear devices remains linear likewise, the power compens- 
ated DSC should also be a linear system [3], but this conclusion can only be 
drawn if the twin arrangement is built very symmetrically. The problem is 
the highly non-linear connection of the sample and reference furnace to the 
isoperibol surroundings. Here the heat transport takes place principally by 
convection and radiation because of the large temperature differences 
between the furnaces and the cooling block. This non-linearity can only be 
neglected if it is strictly equal on both sample and reference side and thus 
vanishes in the differential signal. The power compensated DSC is as linear 
as it is symmetrically constructed. 

Larger samples can influence the linearity as there are also heat transport 
processes within the sample. If the material properties (A, p, c,) change by 
an appreciable amount, the heat transport through the sample (e.g. due to a 
change of the temperature profile) is a non-linear process. Especially this is 
the case during phase transitions of the sample. In other words, a melting 
peak, for instance, is not allowed to be desmeared by deconvolution 
procedures, as the TLR cannot be applied. Besides this there will be no 
problems, in particular if the sample is rather small and the properties do 
not change greatly. 

To sum up, the power compensated DSC operates as a linear 
combination of essentially linear links and is thus a linear apparatus in a 
first approximation. Consequently the TLR is in principal an adequate tool 
to describe its behaviour. 

THEORY OF LINEAR RESPONSE AND ITS METHOD 

An apparatus with linear behaviour can be considered as a black box. No 
knowledge about the internal construction is necessary to describe the 
output of the device on certain input events. 

The background of this description is from TLR, which originates from 
the need to understand the transmitting properties of a rather complex line 
network. The outcome of this theory is that the output of any linear 
apparatus can be described as the convolution product of the input with the 
so called “Green’s function” or “apparatus function” of that apparatus, or 
in mathematical terms 

&(f) - G(t - t’) dt’ = c”(t) * G(t) = G(t) *K,(f) (1) 

&(t) and F,,,(t) being the input and output function respectively of the 
device in question with G(t) as Green’s function. In practice the time scale 
is chosen so that both F(t) and G(t) are zero for negative times. 

The Green’s function can easily be obtained, as it is the response of the 
apparatus to an impulse-like event. The output function following a 
step-like event (such as input function) is the integral of Green’s function, 
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as the following is valid: 

I 

m 

F,,,(t) dt = le En(t) * G(t) dt = G(t) * Irn fin(t) dt = e,(t) * lrn G(t) dt @a) 
0 0 0 0 

and 

$ F,,,(t) = $ (en(t) * G(t)) = G(t) * $ En(t) = En(t) * $ G(t) (2b) 

Furthermore we have the distributive law 

F,,, = Foutl + Foutz =E;i’,l*G+~‘,z*G=(&+I;i’,2)*G (3) 

For an input function being a product of two functions the respective output 
function reads 

F,,, = (& . C;nJ * G (4) 

To calculate the behaviour of a network of different linear devices we 
need to calculate the Green’s function from those of the components, and it 
is helpful to know that the Green’s function of two devices connected in 
series is the convolution product of both Green’s functions, whereas the 
Green’s function of two parallel connected devices is the sum of those of 
the components. With this rule the Green’s function of any network can be 
calculated if one has knowledge about the impulse (or step) response of the 
components. 

Often it is easier to calculate the rather complicated integral equations 
(or equivalent differential equations) in Laplace- or Fourier-space [4]. One 
of the advantages is that the convolution product (eqn. (1)) transforms to a 
simple product in Fourier space (and vice versa). 

The integral transforms named are, in the case of functions non-zero only 
for t > 0 defined as 
Fourier transformation 

S(F(t)) =f(m) = m F(t)e-‘“‘dt 

with f(m) being a complex function of frequency o. 
Laplace transformation 

LZ(F(t)) = f(s) = lffi F(t)e-“’ dl 

(5) 

(6) 

with f(s) being a complex function of complex s. 
Besides the factor in front of the integral, the Fourier transformation is a 

special Laplace transformation with s = iw. The description of an apparatus 
with the aid of the Green’s function in time space, or with its Fourier (or 
Laplace) transformed (the so called transfer function) in frequency space, 
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Some useful rules and correspondences in TLR 

Operation Function in time space Function in Laplace space 

Summation 
Product 
Convolution 
Integration 
Differentiation 
Differentiation in Laplace 

space 
Shift to the right 

Serial connection 
Parallel connection 
Feedback via F2 
Dirac function 

Step function 

Exponential 

Trigonometric 

Hyperbolic 

c,fi(t) + &(t) 
4(t) . F,(t) 
F,(t) * F,(t) 
J-F(r) dr 
d/dtF(t) 

-t . F(t) 
F(t - to) [to > 0; 

F(t<O)=O] 

F,(t) *4(t) 
F,(t) + 6(t) 

6 (t) 
s(t--kJ 
o(t) 
o(t - to) 

ew(4 
t. exp(crt) 
1 - exp(-t/T) 
cos(wt) 
sin(ot) 
sinh(at) 
cosh(at) 

Clh(S> - c2.e) 
fits) *MS) 
A(s) ..I%) 
l/s . f (s) 
s *f(s) -f(+o) 

d/&f 6) 
exp(-toslf (s) 

h(s) .I%) 
h(s) -h(s) 
y(l *fi(slMs)) 

exp(-td) 
us 
l/s exp( -t,s) 

l/(s - a) 
l/(s - (Y), 
l/(s . (1 + Ts)) 
s/(s’+ w’) 
w/(s’ + w’) 
a/(s’ - a’) 
s/(s* -a’) 

is absolutely equivalent. Equation (1) reads in Fourier space 

fo&4 =x&4 - gb> 

or in Laplace space 

J&t(s) = MS) . g(s) 

The convolution product transforms into a common product in both cases. 
It may be helpful to use Table 1 for translation of elementary functions. 

APPLICATION OF THE THEORY OF LINEAR RESPONSE ON POWER 

COMPENSATED DSC 

As shown above the power compensated DSC is a linear system to a first 
approximation. Thus the theory of linear response can be applied and we 
obtain from eqn. (1) 

@o”,(t) = @in(t) * G(t) (7) 

where aOUt is the measured heat flow rate, @in the true heat production or 
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consumption rate of the sample and G(t) the Green’s function of the total 
arrangement. As the apparatus and the sample are connected in series the 
total Green’s function is the convolution product of that from the DSC and 
that from the sample. 

G(t) = C&x(4 * ‘Z(t) (8) 

The Green’s function of the power compensated DSC will be studied in 
detail in Part II of this series [5]. Here we will have a look at the influence of 
the sample on its Green’s function. 

Unfortunately the Green’s function of the sample is not as well defined 
as that from the apparatus, for it changes from sample to sample and with 
certain events (e.g. a transition). In the case of steady state conditions a 
stable temperature profile develops within the sample, such that every part 
of the sample raises its temperature with the heating rate /3 in question [6] 

T(r,t)=T,,+P +r 
where T,, is the starting temperature, r the distance and aT/ar the 
temperature gradient within the sample. 

The sample is thought of as being subdivided into very small elements 
having a mass of m, with a specific heat capacity c,(T). Then the heat flow 
rate into the element i, to heat it at a rate of /3, reads 

@i(T) = mi * cp( T) * p (10) 

As described above the heat transport may be considered as a linear 
phenomenon. Thus the signal transfer by heat conduction may be described 
with the aid of TLR, and the portion of the heat flow from the border of the 
DSC furnace to the element i of the sample reads 

@o,i(T,(t)) = @i(T(t)> * G,(t) = mi * cp(Ti’(t>) * P * G(t) 01) 

The left term of the equation is that part of the heat flow rate out of the 
furnace, which later flows as <pi into the element i. 

The element i comes up to the furnace temperature later. The 
quantitative connection is given by eqn. (9) and the corresponding time 
delay of the element i in position at ri reads 

From eqn. (11) it follows that 

@o,i( T,(t)) = mi . cp( T(t - 2;)) * P * Gi(t) 
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Fig. 1. The convolution of a function Q(t) and a Dirac pulse with a delay z as a “shift to the 
right” in time space. 

or because of the connections demonstrated in Fig. 1 (for time shift 
behaviour see Table 1) 

(a,,&(t)) = mi . c,(?;l(t)) . p * 8(t - ZJ * G&) (12) 

To obtain the total heat flow of the furnace, we have to summarize eqn. (12) 
after expanding with m and collecting constant quantities 

@L&YO) = c %,0X9) 

= m - C,(T(t)) - p * 7 ;a (8(t - zj) * G&)) (13) 

If the subdivision of the sample is thought to be infinitesimally small, the 
sum becomes an integral and eqn. (13) reads 

@o&+)) = m . C,(W) + P * 1 W - cw) * GA)) $ (14) 
V 

As m * c,( T(t)) - /3 is the input function of a sample heated with a rate of /3, 
we obtain from eqn. (14) the Green’s function of an ideal coupled sample 

Gs,id(t) = I, (a(t - rdv) * G,,(t)) $L 

In reality the coupling of the sample to the DSC is not ideal and we have 
to include the Green’s function of heat transfer GTr. We get the total 
Green’s function of the real sample as a convolution product (because of 
the serial connection) 
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and the total Green’s function of the arrangement (DSC and sample) reads 

G(t) = G,,,,(f) * &r(t) * I, (W - GV) * G(O) F (15) 

This equation shows that the Green’s function of the sample depends on 
sample parameters and also on the heat transfer behaviour. Thus it changes 
from one experiment to the other, and with it the signal transmitting 
properties of the equipment. In serious situations the sample parameters, 
and with them the Green’s function, can change greatly during one 
experiment. 

DETERMINATION OF THE GREEN’S FUNCIION OF DSC 

From TLR we learned that the Green’s function on the one hand is the 
impulse answer and on the other hand the differentiated step answer of the 
arrangement in question. As a result there are two ways to determine it in 
the case of DSC: (i) measuring the response of the DSC according to a heat 
impulse inside the sample; (ii) differentiating the measured response of the 
DSC according to a step-like event within the sample. Both methods are 
used in practice. The impulse like event can be realized through the energy 
of a light flash absorbed by the sample pan (e.g. in a photocalorimeter) [7] 
or through the heat released during the sudden solidification of a heavily 
undercooled pure substance (mostly a metal sample) [8]. 

In the latter case there is a grave problem in determination of the exact 
moment of solidification, because of the unknown undercooling. As a 
consequence the beginning of the Green’s function is unknown and may be 
shifted along the time axis. As a result the deconvoluted curve is not exactly 
fixed on the timescale, and thus the attached temperature is not the true 
one. 

Another way of realization is to position a small resistor in place of the 
sample, and to produce a heat pulse with the aid of a current impulse. In the 
latter case the sample and heat transfer conditions have obviously been 
changed, and thus the corresponding part of the Green’s function has 
changed, and is not measured correctly. The same is true for the other two 
realizations, but to a minor extent. 

The method (ii) can be realized without this disadvantage. The input 
heat flow rate (within the sample) reads (eqn. (10)) 

Starting and ending a DSC run always implies the switching of the heating 
rate from zero to a constant value and vice versa. As a result the input heat 
flow fin changes in a step-like manner and the measured heat flow 
(@O”t,,t&)) caused by this event is the step response of the apparatus 
including the sample and its thermal coupling of the DSC [9]. 



36 G. W. H. Hb’hne, J. E.K. Schawe/Thermochim. Acta 229 (1993) 27-36 

Differentiating this function yields the Green’s function written in eqn. (15) 

G(f) = $ Rut,step 

Switching the heating rate on and off can be done as often as necessary 
during every run at any temperature and we can easily obtain the true 
Green’s function at any moment of the experiment. This step response 
Green’s function (G,,) contains both the influence of the apparatus and of 
the sample and its connection. 

CONCLUSIONS 

The power compensated DSC is, in a first approximation, a linear system 
if it is constructed very symmetrically. Thus the theory of linear response is 
to be applied for theoretical description. The Green’s function of the 
complex measuring equipment depends on the DSC apparatus, and also on 
the sample and its thermal connection. 

Changing sample parameters also change the Green’s function. Large 
changes of sample parameters (e.g. during phase transition) disturb 
linearity. As a consequence a desmearing of transition or reaction peaks 
with the aid of TLS is not possible. 

Otherwise desmearing by deconvolution is allowed. The Green’s 
function can be deduced from the response of the equipment on 
impulse-like, or step-like, events. The former method is usually not possible 
without changes of the sample or other intervention into the measurement, 
whereas the step response can be obtained from the heat flow signal after 
switching on and off the heating rate without any disturbances of the 
apparatus. 

In the next paper in this series [5], further details of the theory of power 
compensated DSC will be given. The following papers will show the 
influences of sample parameters and represent experimental verification of 
the theory. 
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